1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
import java.util.function.Function;
import java.util.stream.LongStream;

public class ForkJoinSumCalculator extends RecursiveTask<Long> {
private final long[] numbers;
private final int start;
private final int end;

public static final long THRESHOLD = 10_000;

public ForkJoinSumCalculator(long[] numbers) {
this(numbers, 0, numbers.length);
}

private ForkJoinSumCalculator(long[] numbers, int start, int end) {
this.numbers = numbers;
this.start = start;
this.end = end;
}


@Override
protected Long compute() {
int length = end - start;
if (length <= THRESHOLD) {
return computeSequentially();
}
ForkJoinSumCalculator leftTask =
new ForkJoinSumCalculator(numbers, start, start + length / 2);
leftTask.fork();
ForkJoinSumCalculator rightTask =
new ForkJoinSumCalculator(numbers, start + length / 2, end);
Long rightResult = rightTask.compute();
Long leftResult = leftTask.join();
return leftResult + rightResult;
}

private Long computeSequentially() {
long sum = 0;
for (int i = start; i < end; i++) {
sum += numbers[i];
}
return sum;
}

public static long forJoinSum(long n) {
long[] numbers = LongStream.rangeClosed(1, n).toArray();
ForkJoinTask<Long> task = new ForkJoinSumCalculator(numbers);
return new ForkJoinPool().invoke(task);
}

public static long parallel(long n) {
return LongStream.rangeClosed(1, n).parallel().reduce(0, Long::sum);
}

public static void main(String[] args) {
measureSumPerf(ForkJoinSumCalculator::forJoinSum, 1000000L);
measureSumPerf(ForkJoinSumCalculator::parallel, 1000000L);

}

public static long measureSumPerf(Function<Long, Long> adder, Long n) {
long max = Long.MAX_VALUE;
for (int i = 0; i < 10; i++) {
long start = System.nanoTime();
Long result = adder.apply(n);
long time = (System.nanoTime() - start) / 1_000_000;
if (time < max) {
max = time;
}
}
System.out.println(max);
return max;
}
}